








densities on the pcrfomancc  of a particular n:ivigation  algorithm), or it can bc chosen
accmxiing  to the. standard model of h4artian  terrain, dc~’e,lopcd  by h400rc [ 19]. According
to h400rc’s model, the nmnhcr of rocks  pm square ]Dctcr with a dialnctc.r lCSS thaT)  or equal
10 a given size 11 is:

Ndd)-~f6 (1)

where k js a paramclm that varies accmcling  to the ~Jarticular  localiml  on the surf ace.. ‘1’his
nmdcl  is an empirical fit to the rock size ctist~ ibLltions  observed at tlm two Vikins  lander
sites. It is accurate only for 1) > 14 cm, which is fortuitous since ll]is is about h smal]cst
sim rock that the laser ranging sensor will detect as all obstacle. If onc assumes that the
Moore model distribution holds over the entire planet, tllcn thermal incrlia data indicate that
the modal value of k for all of Mars is approximately 0.004 15; this case is rcfcrrcd tc) as
“Mars-non~inal”  terrain.

1,ocaticms for obstacles arc gcncratcd  using a random  number g,cne.rater. Rocks arc
placed at the prescribed location using a t apc measure. Scttins  u}) a test course is tinlc-
consuming work, so each course was used fcu four mm, two in c.ach direction. ‘1’his also
allows some interesting statistical analysis to bc dorlc to dctcrmim,  for cxamp]c, how
rcpcatab]c  (and thus how prcdictab]c)  the rover’s pcrfol mancc is ill a g,ivcn tcmin.

‘1’hc rover Jnovcs in discrctc steps, where each step is cithcJ a turn in place or a
forward movement of approxinlatcly  Onc wheel J’,ldjus (7 cm). After each step a
supervisory program running OJI an off-board workstation ] c,cordcd the rover’s position
and heading as computed by dead reckoning, the J“ovc.r’s absolute. position, the state of the
rover’s ohs[aclc detectors, and a time stamp. I)atascts  wcvc iJldcxrxl  to records of the
terrain layout  in which they were run.

s. Rcsulk

‘]’hc rover is quite slow, moving at an avmagc  sp(’.cd of ]CSS tt]an ] cJn/s.  Most of the
time is spent processing the data from the laser range finder. WC. were ab]c to complete a
tot al of about 100 runs over t hc course c)f a su nmcr,  of whicl] 40 WC.I c. performed in Mars-
JIOIlli Jl[d tcrmin. ‘1 ‘hc rcll”tai  11(]cI  WCI’C  performed uJldcJ  a varirt y of ot l)cr obst ac]c dcnsit ic.s,
iJ~cluding  z.cro obstacles as a control case. (’1’hc mro-obstac]c  case was also used to
cva] uatc the rover’s dead reckoning pcrfornlaJ~cc  [18]. )

‘J’hc raw dala consisted of a complctc record of the mvcr’s ~mt}l  for each run. Wc
rcduccd  this data by computil~g  two pe] formancc metrics for each rll]]: total path length  ;ind
total traverse t imc (corrcctcd  for delays i nlmiuccd by the OVC.J head tracking systcJn).

‘J’hc rcduccd  data for the h4ars-non~inal case arc depicted as a scatter plot in fi~LJrc 1.
1 klCh  pOiJlt 0]1 thC ]310t COJ’I”CS]>OIKIS tO OllC 1111”1. ‘1’hc two axes rc.present the two different
performance metrics. ‘1’his figure illustrates our first result: path length and traverse time
arc poorly comlatcd;  the correlation cocfficimt js 0.69. in this case. the poor correlation is
easily explained by the fact th:tt  the rover occasionally turns in place as part of its navigatioJl
stratcsy.  Ncvcrlhcless,  these results show that optiJnizi  J~~ path ]cngth  on the tacit
assunq>tioJl  that other performance. metrics will corrclatc  may not bc an cffcctivc.  strategy.

‘]’]IC CUlllUhltiVC  distribution fLIJICtiOIl  fO1’ thC ‘ICdUL:Cd diSt:lllCC data iS ShOWl)  :tS thC bCdd
liJlc in figure 2,. (’I’his  fig,urc shows the siJnulation  rcsu]ts  su})cIiInposcd  on the results
from the real robot - scc section 6. ‘1’hc distribution function foJ” time looks virtually
idcJltical,  but with a diffcrc,nt scale OJI the y-axis. ) ‘1’llis figuJ’c illustrates our second rcsult:
the distribution functions  arc not normal. in scctio~l  7 wc will SI]OW that they arc in fact





Rate  gyro: ‘J ‘hc rate gyro included an ae.cumulakxi drift emu nmlc] that i neqmr:itcd
the obsmd increased error when the mbd comes in cxmtact with a rock [ 18].

Odometer: “I”he  odomctcl on the real robot measures the position of the wheels and
so cannot detect when the wheels slip ill loose soil. ‘1’llc  simulation odometer mimics this
behavior by recording the commanded distance traveled rat}~cr  than the actual distance. “l’he
odometer clata is combined with the rate gyro data tc) compute the silllulatcd  vchic]c’s dMd-
rcckoning posilion.

1 ,ascr range sensor: ‘1’hc  laser range sensor was modeled as a pair of simple
proximity sensors whose outlines were the, effective covcra~,e arc:i  of Ihc actllal scJ~sor.
This simulates the behavior of the sensor after tl]e raw ] angc data is ]mccssc.d.  l)cvcloping
a more sophisticated model of this sensor is high on t}lc list of potcntjal  enhancements to
the system.

IJcspite the relatively simple nature of this simulation it prmiuccs remarkably high
quality rcsLllts. Qualitatively, the behavior of the silnulatcd  rover is vir[ual]y
indistinguishable from that of the real one. llowcvcr,  this sorl of gestalt assessment is
prcciscly  the sort of informal, anecdotal result  that wc have criticized so scvcrcly. Wc
t hcrcforc  now proceed to dcmonst  rate formal] y that we have capt u ed soInc of the relevant
aspects of the real rover’s behavior in OU] simulator model.

We duplicated the sandbox experiment on the simulator in IWO separate sets of
cxpcrimcntal  trials. in the first set of trials we dicl 100 JLmS  in cacll of nine different terrain
densities. (A random field of obstacles was ge.ncratcc]  i“or each run, so there were a total of
900 different obstacle fields used.) ‘1’hc results from time trials (excluding failures - see
section 7.4) arc shown in figure 2 as cumulative probability distributions. “1’hc results from
the real robot arc superimposed as ii bold ]inc. The M oorc-model parameter ranges from
0.00015 to 0.00815 in even increments of 0.()() 1.

IT] the second set of simulator trials wc ran 804 rLm$ using a Moore moclcl  pmmctcr of
0.006. (See section 7.4 for an explanation of the apparent ctiscrcpancy between this and
the value of 0.00415 used for the real cxpcrimcnts.j)  I’hc results of these runs (again
excluding fi~ilurcs)  arc shown in figure  3, superimposed with the real data and a best-fit
exponential curve. By visual inspcctioJl, the fit of all tllrec curves appears to be quite good.
Sc]cctcd  results when fiiilures arc not excluded are shown in figure  -4. As usual, the real
data arc superimposed as a bold line. ‘1’hc rcsLllts do not match the real data nearly as well,
indicating that the simulator’s cnmrgcnt  failure model nlay be flawed.

in the next section wc will fcmnally mdym these informal observations.

7. Analysis

‘1’0 draw conclusions about our data we employ statistical tests. ‘1 ‘here arc a number of
subtle issues  in the usc of statistical tests a]ld in the. inkrprctation  of their results which arc
not common knowledge aJnong  mobile. rol)otics reseal chcrs. It is tllcrcforc  worthwhile to
digress for a moment to discuss statistical tests in gene.I d bcfom rctul  ning to the analysis of
our data. A reader familiar with statistic:il methods shou]d feel free to skip to section 7.2.

7.1 Digression: on the nature of statistical tests

Statistical analysis is rclatccl  to probability theory  in that botl)  deal with phenomena
I hat, by assumption, cent ai n clcmcnts  that arc unmodd able a priori. 1 ]owcvcr,  unli kc pure
probability theory, which attempts (O derive probabi]itics  from first principles, statistics
deals with the prob]cnl of drawing conclusions about ])robability distributions by
examining sets of {]ata pojnts  drawn fronl those distriblltjons.





va]ucs. ) Note that this dcm not mean (hat the distribLltions arc cxponcnti:i],  just that wc
can’t distinguish my diffcrcnccs  that there might bc cm the basis of tlm data wc have.

IIy way of contrast, if wc test tbc hypcrthcsis  Ihat the distributions arc normal  with
mean and variance cqua] to the sampling means anti variances of the two (iatascts,  wc
obtain values of KS of 0.23 for dis(allcc  a~ld 0.18 for time. ‘1’l)c. corrcspcmciing  null-
distribution probabilities for 40 (iata points are ().025 and 0.13. ‘1’lIus  wc can conclude
wi(h bct(cr than 95% confidence that the distribution for distance. is not normal, ancl better
than 85% Confictcncc] that the distribution for time is not normal.

7.3 Analysis 2: comparison of simulated and real results

‘1’o test the second hypothesis wc have.  three o])tions. }~irst, if we assume that the
distributions arc cxponcntia]  wc could employ a paranlctric  analysis and estimation tbcory
to derive a numerical solution (with error bounds) for the distribution functions ancl
compare thcnl. 1 lowcvcr,  the cviciencc  that tllcy arc it) fact c.xponential  is prct t y thin, and
such an assumption could lead us seriously astray. ‘f’hc second al[crnativc is to usc the
di scrctc form of the Kolnmgorov-Snlir  nov test to corn] )arc thcm. ‘1’hc thircl alternative is to
employ a diffc.rent test altogether. It turns out that for conlparing  two sampling
distributions there arc better methods availab]c.  We will L]SC :i statistic advocated by
1,chmann [17], the Wilcoxon-Mann-Whitney (WMW) statistic.

‘1’hc WM W statistic is computed as follows. 1.et D] and 1X2 bc sets of m and n data
points drawn rcspcctivc]y from probability y distributions 1’1 and 1’?,. ‘1’hc. data in I) 1 and 1)2
arc combincxi an(i sortui. }lach datum is then rankc(i :lccor(ii  Ilg to its position in the sortc{i
list; the first number in the list is assigllc(i the rank 1, the sccon(i number the rank 2, etc.
‘1’hc ranks arc then separated accorxiing  to which ciistribution (1)1 or 1)2.) its corresponding
(iatum was dr:iwn from. The separated lists of ranks arc tl]cn sum]nui  to produce two
numbers, S1 an(i S2.

It can bc shown that if 1’1 an(i P2 arc the same, then S 1 and S2 have normal
probabi]it y (distributions whose paramcte.rs arc in(ic])cn(icnt of }’1 an(i P2. ]nstca(i,  the
parameters (icpcnd on the number of ciata points, m an(i n:

};(S 1 ) =. n(m+n+l  )/2

1;(S2) = m(m+n+ 1 )/2

Var(S 1 ) = Var(S2) = mn(m+ ni 1 )/1 2

where 1 i(X) {icnotcs  the cxpcctect  valLlc (mean) of a rall(iom variable X, an(i Var(x) cicnotcs
its variance. l]ccausc  the variances arc the same, the c]liantity:

S = S 1 -n(m+-n-t 1 )/2 :: S2-nl(nH n-l 1 )/2

is sometimes usc[i  instcaci  of S 1 ami S2. ‘]’hc variance of S is tllc salm  as that of S 1 an~i
S2, and the mean of S is, of course., zero.

] []sud]]y.  a confidence lCVCI of at Icasl 90Y0 is rcc]uil”c(i fo[” a rcsu]t to be considc.red stat istictllly
significant. A mquircn)cr)t of 95%0 confidence is c(mll[}(m  in many fields.





fit c)f I1]C simulator data and the real data is obtained when the Moore model parameter in the
simulator is set to approximately 0.006. 1 lowcvcr, the value  of the par:imctcr  in the real
cxpcrimcnts  was 0.00415, the Mars Nominal value. This mismatch caused some
consternation until it was cliscovcrcd that the nlinin]Llnl  rock diatnctcr, l)., in the real
cxpcJin~cnts  was set to 10 cm rather than 14 as in the simulator, Moore’s model is very
sensitive to the value of 1)0 in the 10-15 cm range, and this cliffcrcncc  resulted in enough
a(iditiona] obstacles to make the overall obstacle ctcmsity approximately the same as the
simulator. (Actually, there were about twice. as nlan~’  small rocks as there should have
been, but about h:tlf of those were ignored by the robot’s pcrccpt ion syskm.)

8. Conclusions and lhturc Work

Wc arc working towarcts ri~orous  cxpcrin~cntal  study of autonomous mobile robots.
OLlr approach is to employ the mcthoc]s  of the natLwal  sciences in our investigations. We
usc simulations, but wc treat them as models  rather than as the sys(cm  under stLldy.  The
value of a simulation is measured by how well it predicts the behavior of a physical system.
Wc usc statistical methods to evaluate our cxpcI imcntal  data.

To d:itc wc have carried out only a poJtion  of our research }mgram.  Wc have
constrLlctcd a simulation and verified that it postdicts the behavior of a rc.al robot in a
statistically nlcaningfLll  way. Wc have also used the sin)u]ator  to gcmcratc  predictions about
the behavior of the rover under conditions in which it has ncvcl been tcstc(i. ‘1’hc final step
of our research, to be completed this sunmcr,  is to tcsi these predictions by performing a
second series of cxpcrimcnts.

Our work offers two central contributions. Wc offer the first solid experimental
evidence that certain performance Jnctrics,  oflcn tacitly assume.d to bc WC]] corrc]ated,  can
in fact be highly unccwrclatcd in practice. ]n retrospect this is fairly obvious; nevertheless,
it is a fact often ignorcc]  in the literature.

our second contribution is the introctLlction  of statistical ri~or to the evaluation of
cxpcriJncn@]  results. Wc have presented what is to our kJlow]cdgc the first statistically
significant result in the. field of autonomous mobile ] obots,  J)amc]y  that the probability
distributioJ~s  on ccr[ain performance Jnctries under certain conditions arc not normally
distributed. Wc used rloll-l>:~ra~llctl’ic  lncthocls for comparing probability distribLlticsn
fLmctions.  “l”his allows us to ctraw quaJ~ti{ativc  conclusions about the probabilities of cerlain
events withoLlt  knowing a priori (1]c shape of the probability distribution.

We would like to see these I-csu]ts indcpc.rldcnt]y verified by otllcr rcscarchcrs. If the
shapes of the distributions on a variety of standardized tc.sts  can be conclusively established
then we can transition to more powcrfL)l  pal amctric analysis methods in comparative
studies. l:urthcrmorc,  if it can be established with statistical rigor that a standardi~,cd
simulation is indeed an accurate model of a class oj physical robots t}lcn the currcJ~t
ongoing debate about the value of siJnulatio  Il results would bc sctt]cd,  and the cost of
conducting comparative stLldics  of control nmljodolop,ics  could bc dramatically reduced.
1 ]owcvcr, before this cat) be achieved a much larger corpus of cx])cl ilncntal  data gathered
under a variety of carefully controlled conditions needs to bc cstablishmi.

A coJnplinlcJ~tary line of research is to develop a Jnathcmatica]  theory to explain the
observed shapes of the probability distributio~l fLmctions  for the ])crformancc  metrics wc
have clloscn.  “1’lmy appear to be cxponcntia],  indicat~ng that rover navigation in rough

ll(~w’cvcl,  in tl)is CaSC Ihc )msl(lictiotl stlowc(l  l})al wl)al we thollgt]t was a Iw[:ativc result was, in facl, a
[wsitive OIIC I)y ])]~(]icti]]g a mislakcn assu]llpliorl irl O(II ar)alysis.
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Figure 2: Cumulative probability distrib[ltions of the distance
metric for a goal 7.6 meters from the starting location at
various obstacle densities, superimposed on data from the real
robot (bold line). The curve furthest to tile left is for n Moore
model parameter of 0.0 CIO15, and ea(:h successive curve
increments this value by 0.001.
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Figure 3: Comparisons of three cumulative prot]ability
functions for distance: 40 data points fror]l the real rover, 629
data points from the simulator, and an exponential curve.
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Figure 4: Sinlulator  results when failures are not ignored for
M o o r e  p a r a m e t e r s  o f  0.00415,  0.00515  a n d  0.00615,
superimposed on the data from the real Iobot (bcdd line).


